If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+12x-81=0
a = 10; b = 12; c = -81;
Δ = b2-4ac
Δ = 122-4·10·(-81)
Δ = 3384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3384}=\sqrt{36*94}=\sqrt{36}*\sqrt{94}=6\sqrt{94}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{94}}{2*10}=\frac{-12-6\sqrt{94}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{94}}{2*10}=\frac{-12+6\sqrt{94}}{20} $
| 71.8+21y-1=180 | | h−10=28 | | x7=32 | | 1+x=7-x+6 | | 7s-20-20=20+12s | | a-4=3a+16 | | 3x-1=32-x | | 7+7x=15+5x | | 2(4w+6)/5=1 | | -12p=-6(2p+19) | | -3(p-4)=12 | | 6+x=9-x | | 5=1/3(3x-15) | | 14-3p=-2p | | -3(t+4)=-3t | | z/3+20=14 | | -8+u=-5u+10 | | 3x-7+46=17+5x | | 7x+28=58 | | 3f-13-12f=5-10f | | n-30=6(n-2) | | 4/3/10-(2/2/5x+5/1/2)=1/2(-3/3/5x | | 13y-9y=32 | | 17-9y=-8+16y | | 5x+2.50=5x | | -7(-y-1)=8y | | 15=9-9a | | 47-x+9=x | | -8+u=5u+10 | | 2*4+3y=-1 | | 5+6x=-5x+5 | | 4x-2+3x=-2 |